
Enantiomerically defined α-stannylalkyl or α-methylben-
zyl vinyl ethers, when treated with butyllithium, are shown to
undergo the 1,2-vinyl migration to afford the allylic alcohols in
almost racemic form in low or high yield, respectively, thereby
proposing the radical cleavage-recombination pathway.  

Over decades the 1,2-alkyl migration on α-lithiated ethers,
now called [1,2]-Wittig rearrangement, has attracted consider-
able interest from mechanistic and synthetic points of view.1

This type of 1,2-alkyl migration is now well-recognized to pro-
ceed via the radical cleavage-recombination pathway with
slight inversion of configuration at the Li-bearing terminus (eq
1).  Meanwhile, another interesting variant has been reported
which involves a 1,2-vinyl migration on α-vinyloxy benzylic or
allylic organolithiums to yield the allylic alcohols (eq 2),2 while
its scope remains largely unexplored.  This type of [1,2]-Wittig
variant is of particular interest, since structurally related α-allyl-
oxy and α-homoallyloxy organolithiums are known to undergo
the concerted [2,3]-sigmatropy rearrangement3 and the car-
bolithiative cyclization,4 respectively.  However, the mecha-
nism of the 1,2-vinyl migration remains totally unsolved.  The
key question is whether the 1,2-vinyl migration proceeds via a
radical mechanism similar to that proposed for the usual 1,2-
alkyl migration or via an intramolecular carbolithiation mecha-
nism similar to that recently proposed for the 1,2-carbamoyl
migration (eq 3).5 To answer this question, we investigated the
steric course of the vinyl-migrating [1,2]-Wittig variant using
enantiomerically-defined substrates, with the reasonable predic-
tion that the carbolithiation pathway should result in almost
complete retention of configuration at the Li-bearing stereocen-
ter.  Disclosed herein are the stereochemical outcomes of the
1,2-vinyl migrations of the enantio-defined α-stannylalkyl and
α-methylbenzyl vinyl ethers, which provide solid evidence in
support of the radical cleavage-recombination mechanism.

At the outset, our attention was focused on the rearrange-
ment of the enantiomerically defined α-stannylalkyl vinyl ether
(E)- or (Z)-2 prepared from the allyl ether (R)-1 via olefin

migration (Scheme 1).  Thus, (R)-1 (95% ee)6 was first treated
with RhCl(PPh3)3

7 to afford the vinyl ether 28 in Z-riched form
(Z/E=2/1) without appreciable loss of enantio-purity.9

Interestingly, treatment of 1 with the hydride catalyst generated
in situ from Ir(cod)(PMePh2)2

10 was found to result in the exclu-
sive formation of (E)-2,8 again, without loss of enantio-purity.9

When (E)-2 was transmetalated with n-BuLi (1.2 equiv) in THF
at –78 ˚C to generate the lithio species (E)-3 with complete
retention of cofiguration11 and then stirred at that temperature
for 0.5 h followed by hydrolysis with D2O, no vinyl-migrated
product (4) was detected, but the deuterated ether (E)-5a was
obtained in 72% yield.  However, when the reaction temperature
was raised up to –25 ˚C over a period of 14 h followed by
hydrolysis with D2O, the rearrangement product (E)-412 was
obtained in 19% yield, together with 43% yield of the protonat-
ed ether (E)-5b; surprisingly, none of the deuterated one was
formed.13 Significantly enough, alcohol (E)-412 thus obtained
was found to be almost racemic (9% ee),14 while the E-geometry
was completely retained as previously observed.2,15 A similar
reaction of (Z)-2 (>95% Z) also afforded 16% yield of the
racemic alcohol (Z)-4, again, with complete retention of Z-
geometry, together with 18% recovery of (Z)-5b13 and 16%
yield of byproduct 6.16 Thus, these results reveal that the 1,2-
vinyl migration onto an α-oxyalkyllithium occurs with much
smaller facility, compared with the reported benzylic and allylic
counterparts2 and, more importantly, the present vinyl migration
proceeds in almost non-stereospecific fashion at the Li-bearing
terminus.  Obviously, these findings are suggestive of the radical
nature of the 1,2-vinyl migration.

In order to gain more evidence supporting the radical
mechanism, we next carried out the rearrangement of enantio-
defined benzylic vinyl ethers.  Thus, the (R)-α-deuterobenzyl
vinyl ether 8, prepared as an E-riched mixture (E/Z=12/1)8 in
89% yield from the enatio-enriched allyl ether 7 (96% ee) by
using the aforementioned iridium catalyst, was treated with n-
BuLi (1.2 equiv.) in THF-TMEDA (20% vol) at –78 ˚C to
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afford, after hydrolysis, the vinyl-migration product 9 in 59%
yield (eq 4).  Alcohol 9 thus obtained was essentially racemic
as revealed by chiral HPLC assay.  However, this outcome,
while consistent with the radical mechanism, does not necessar-
ily serve as solid evidence for the radical mechanism, since α-
oxybenzyllithiums in general are known to be configurationally
labile.17 Thus, we next examined the rearrangement of (R)-α-
methylbenzyl vinyl ether (11) of which the lithium species
should be configurationally more stable.17 Thus, treatment of
(R)-11 (100% ee), prepared from (R)-10 by the literature
method,18 with n-BuLi in THF at –78 ˚C was found to afford
the vinyl-migration product (R)-1219 in 87% yield in slightly
inverted form (22% ee)20 (eq 5).  

This result provides solid evidence for the radical mecha-
nism and against the carbolithiation mechanism as well.
Overall, it is safe to conclude that the present 1,2-vinyl migra-
tion proceeds via the radical pathway, wherein the configura-
tional integrity at the Li-bearing terminus is mostly lost, while
the geometry of the migrating vinyl group is completely
retained (Scheme 2).

In summary, we have proved that the vinyl-migrating
[1,2]-Wittig rearrangement on α-lithiated alkyl and benzyl
vinyl ethers, like the well-known alkyl-migrating variant, pro-
ceeds via the radical cleavage-recombination pathway based on
the elucidation of the steric course of the asymmetric versions
using enantio-defined substrates.   Furthermore, we have point-
ed out the importance of a radical stabilizing element in the car-
banion part as a key factor to facilitate the 1,2-vinyl migration.
Further works on synthetic applications of the present [1,2]-
Wittig variant as well as the development of the enantioselec-
tive version are in progress.
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